CSIR NET Recorded Course!

Buy Complete course for CSIR NET Mathematics with more than 200 Hours of Lectures, designed for you.

Limited TIME OFFER

Linear Algebra MCQs and MSQs with Solutions for CSIR NET, IIT JAM
System of Equations – IV

Practice Questions for NET JRF Linear Algebra <br> Assignment: System of Equations

31. The solutions to the system of equations :

\((1-i) x_{1}-i x_{2}=0\)

\(2 x_{1}+(1-i) x_{2}=0\) is given by:





32. Let \(A\) be an \(m \times n\) matrix where \(m





33. The system \(A x=0\), where \(A\) is an \(n \times n\) matrix,





34. Let \(\mathrm{P}\) be a matrix of order \(m \times n\) and \(\mathrm{Q}\) be a matrix of order \(n \times p\), \(n \neq p\). If \(\operatorname{rank}(\mathrm{P})=n\) and \(\operatorname{rank}(\mathrm{Q})=p\), then \(\operatorname{rank}(\mathrm{P Q})\) is





35. Let \(\mathrm{A}\) be a \(m \times n\) matrix with row rank \(r=\) column rank. The dimension of the space of solutions of the system of linear equations \(\mathrm{AX}=0\) is





36. Let \(\mathrm{M}\) be a \(m \times n(m < n)\) matrix with rank \(m\) Then





37. Consider the system of linear equations

\(a_{1} x+b_{1} y+c_{1} z=d_{1}\),

\(a_{2} x+b_{2} y+c_{2} z=d_{2}\),

\(a_{3} x+b_{3} y+c_{3} z=d_{3}\),

Where \(a_{i}, b_{i}, c_{i}, d_{i}\) are real numbers for \(1 \leq i \leq 3\). If \(\left|\begin{array}{lll}b_{1} & c_{1} & d_{1} \\ b_{2} & c_{2} & d_{2} \\ b_{3} & c_{3} & d_{3}\end{array}\right| \neq 0\) then the above system has





38. Let \(A=\left(\begin{array}{ccc}12 & 24 & 5 \\ x & 6 & 2 \\ -1 & -2 & 3\end{array}\right)\). The value of \(x\) for which the matrix \(A\) is not invertible is





39. Let \(A=\left(\begin{array}{ll}\pi & p \\ q & r\end{array}\right)\) where \(p, q, r\) are rational numbers. If \(\operatorname{det} A=0\) and \(p \neq 0\) then the value of \(q^{2}+r^{2}\)





40. Let \(A=\left(\begin{array}{ll}a & \pi \\ \pi & \frac{1}{49} \end{array}\right)\), where \(a\) is a real number. Then, \(\mathrm{A}\) is invertible





41. Let \(\mathrm{A}\) be an \(n \times n\) invertible matrix with integer entries and assume that \(A^{-1}\) also only integer entries. Then,





42. The determinant \(\left|\begin{array}{cccccc}x_{0} & x & x_{2} & x_{3} & x_{4} \\ x_{0} & x_{1} & x & x_{3} & x_{4} \\ x_{0} & x_{1} & x_{2} & x & x_{4} \\ x_{0} & x_{1} & x_{2} & x_{3} & x\end{array}\right|\) equal to





43. For real numbers \(a, b, c\), the following linear system of equations

\(x+y+z=1\)

\(a x+b y+c z=1\)

\(a^{2} x+b^{2} y+c^{2} z=1\)

has a unique solution if and only if





44. Let \(M=\left[\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 2 \\ 2 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]\). Then the rank of \(M\) is





45. Let \(D_{1}=\operatorname{det}\left(\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right)\) and

\(D_{2}=\operatorname{det}\left(\begin{array}{ccc}-x & a & -p \\ y & -b & q \\ z & -c & r\end{array}\right)\). Then





Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top